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Summary 

Location: Hywind Tampen Floating Windfarm Norway 

Number of cameras: Three  

Survey Duration: May 2023 to November 2024 

Hours of video analysed: 8,252 

Total bird observations: 2,197 

Bird classification:  

● 1,948 (89 %) classified to order 
● 1,922 (87 %) classified to family level  
● 1004 (46 %) classified to species level  

Norwegian Red List Endangered birds identified: Black-legged kittiwake 

Norwegian Red List Vulnerable birds identified: European Herring Gull 

 

Three CCTV cameras were installed within the Hywind Tampen Floating Offshore Wind Farm in 

Norway for the purpose of Health, Safety and Environmental Monitoring. However, the data 

collected by these cameras also offer the potential to collect data on the presence, abundance 

and behaviour of birds within the offshore wind farm. To investigate this, Equinor partnered with 

Spoor to rapidly scale this approach, and contribute to filling key gaps in our understanding of 

bird movements in and around offshore wind farms.  

 

Data were collected over 19 months from May 2023 – November 2024, and in total 2,197 birds 

were detected over 8,252 hours of monitoring. Of these, 89% were classified to order level, 87% 

to family level and 46% to species level. The dataset was dominated by large gulls (Larus spp.), 

in particular the Great Black-backed Gull Larus marinus.  

 

In collaboration with The Biodiversity Consultancy, the resultant data were analysed to 

investigate patterns in abundance, flight heights and flight directions. Annual patterns in 

abundance, with the number of birds recorded peaking during summer months, became 

apparent after data were normalized to account for recording duration and camera field of views 

were standardized to cover an equal detection space. Weather conditions did not appear to 

strongly influence observations, though this is likely to reflect the distance to the weather station 

from which data were available.  

 



  

3 

Analyses of flight height data indicated that the majority of recorded birds were at collision risk 

height. However, this is likely to reflect the fact that minimum height covered by the camera field 

of view was approximately 19 m above sea-level, consequently lower flying birds would not be 

detected. As might be expected given the propensity for many of the species detected in this 

study to fly close to the sea surface, mean flight heights were typically close to the lower limit of 

the field of view of the cameras.  

 

Seasonal and spatial differences were detected in species recorded flight directions. More 

directional flight was detected by the camera collecting data outside the wind farm than was the 

case for the two cameras within the wind farm. Similarly, there was evidence of more directional 

flight, along a North-West to South East axis, during the periods associated with spring 

migration, likely to reflect birds returning to their breeding grounds.  

 

To better understand the applicability of the approach, data were further investigated in order to 

determine the extent to which assumptions made in processing may influence the uncertainty, 

bias, error and precision of the resulting observations. A key focus for these analyses was the 

impact of an assumption of a standard 1 m wingspan across all species on estimates of species 

flight heights and the distance between the bird and camera. This assumption introduced a 

systematic error and bias into both estimates. As the most abundant species recorded have 

wingspans in excess of 1 m, both values were underestimated. However, as our analyses 

highlighted, these errors could be reduced through the use of species specific estimates of 

wingspan.  

 

The results presented in this report highlight the potential value of data collected using CCTV 

cameras for contributing to a greater understanding of bird interactions with offshore wind farms. 

Whilst challenges remain in the interpretation of the resulting data, these can be addressed by 

using cameras with a standardized field of view within each study, and by basing estimates of 

distance and flight height on species-specific wingspan estimates where possible.  
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Introduction and background 
Equinor and Spoor have partnered to deploy Spoor AI bird-monitoring technology on Hywind 

Tampen, filling a data gap on bird activity offshore. The collection and analysis of these data is 

expected to inform biodiversity risk and ensure that offshore wind is planned and operated in 

environmentally responsible ways. 

 

Uniquely, this project uses AI to process videos from CCTV cameras which were pre-installed on 

the floating wind turbine service platforms (initially intended to monitor Health, Safety, and 

Environment activities). This innovative configuration means that greater value can be captured 

from the same hardware performing two different functions. Although the CCTV cameras are 

lower resolution (and therefore range) than the cameras which Spoor typically use, this project 

has the potential to enable the collection of bird-activity and species identification (ID) data from 

offshore assets which have CCTV cameras installed. This would enable a rapid scaling of bird 

activity data-gathering offshore which has the potential to make a huge contribution to the state 

of the science and of the offshore wind industry worldwide. This report is a follow-up to the original 

pilot study1 with an aim of better understanding sources of variability, bias, error and uncertainty 

in the data collected. 

Hywind Tampen 

Hywind Tampen is the largest floating wind farm in the world, located 140 km off the Norwegian 

coast, (see Figure 1) with a capacity of 88 MW, provided by eleven 8.6 MW Siemens Gamesa 

wind turbines.  The project directly reduces emissions from oil and gas production on the Snorre 

and Gullfaks offshore fields by approximately 200,000 tonnes of CO₂ and 1,000 tonnes of NOx 

emissions per year.  

 

Hywind Tampen is Norway’s first full scale offshore wind farm and has a critically important role 

to play in the development of the Norwegian offshore wind industry and the global expansion of 

floating offshore wind, which Equinor pioneered. From a biodiversity perspective, Hywind Tampen 

provides a unique opportunity to gather bird activity data off the coast of Norway and start building 

a knowledge base to understand and protect vulnerable species as they interact with industrial 

windfarm development.  

 

 

 
1 Pilot Report Spoor - AI Avian Monitoring with CCTV Cameras on Floating Wind Turbines Experiences 
and Future Potential Available online at: 
https://cdn.equinor.com/files/h61q9gi9/global/26cc50b23fe8e28e10f9cc74c2dad1d20dae188a.pdf?pilot-
report-avian-monitoring-on-floating-wind-turbines-2024-equinor.pdf 
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Figure 1: Courtesy of Equinor: Hywind Tampen (n.d), showing the location of the Hywind Tampen wind farm, 140 km 

off the Norwegian west coast.  

About Spoor 

Spoor is a Norwegian biodiversity technology company, with a vision to enable nature and 

industry to coexist. Spoor promotes biodiversity positive wind energy development by combining 

high-resolution video cameras with advanced AI-based software to detect, track and identify birds 

and analyse their activity. This kind of accurate, detailed empirical data can reduce environmental 

and financial risks and allow smarter decision making by developers and regulators. Spoor 

currently employs 22 people of diverse backgrounds; with 14 nationalities and a 36% female 

representation. The team’s expertise includes ornithology, offshore wind, regulatory affairs, data 

science, edge computing, and machine learning. Since the first pilot was launched in March 2021, 

Spoor's solution has been deployed on multiple onshore and offshore sites in Northern Europe, 

with further installations underway. Together with Equinor and Fugro in a separate project, Spoor 

pioneered the use of floating offshore platforms offshore to monitor bird-activity for pre-

construction surveys. 

https://www.spoor.ai/
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About The Biodiversity Consultancy 

The Biodiversity Consultancy is a specialist consultancy in biodiversity risk management. We 

work with sector-leading clients to integrate nature into business decision-making and design 

practical environmental solutions that deliver nature-positive outcomes. We provide technical and 

policy expertise to manage biodiversity impacts at a project level and enable purpose-driven 

companies to create on-the-ground opportunities to regenerate our natural environment. As 

strategic advisor to some of the world’s largest companies, we lead the development of post-2020 

corporate strategies, biodiversity metrics, science-based targets, and sustainable supply chains. 

Our expertise is applied across the renewable energy sector, including hydropower, solar, wind, 

and geothermal, where we specialise in the interpretation and application of international finance 

safeguards.  

Aims and objectives 

This report will set out the key results and birds observations collected over 19 months (May 2023 

– November 2024) of monitoring at Hywind Tampen Offshore Wind Farm. This will include a 

description of the species observed and discussion of the seasonal patterns in abundance and 

flight direction. To facilitate comparison between data collected using cameras with different 

sampling volumes, we develop approaches to produce normalised estimates of abundance from 

the available data. Using these estimates, we will analyse the data in relation to temporal and 

environmental variables in order to quantify the uncertainty introduced into the data as a 

consequence of these. Finally, we will consider how assumptions made in relation to the body 

size of birds may impact the precision of the available data, with particular reference to factors 

that may influence assessments of species collision risk. 

     

https://www.thebiodiversityconsultancy.com/
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Methods 

Data capture 

Surveillance cameras as sensors 

Spoor AI utilises cameras as sensors for data capture. Spoor AI software is hardware agnostic 

and can process video from any commercially available high-resolution camera. This allows for 

flexible, lightweight and cost-effective infrastructure. The AI software is adapted to analyse data 

from both stable and unstable (floating turbines/buoys) vantage points. 

Camera-based monitoring is a non-intrusive technology that will not interfere with any other 

installations. It is also a non-intrusive methodology that has minimal interference with the 

environment and species it is monitoring, and therefore introduces a minimum of sampling biases 

compared to human observers.  

To date, Spoor has worked with surveillance video cameras from AXIS, Avigilon and Eaton 

(Hernis) with both wide-angle dome cameras and classic bullet cameras. Surveillance cameras 

are affordable and are designed to record continuously for years at a time. They have custom 

built water and weatherproof housings that are durable in tough weather conditions. One current 

disadvantage is that they are designed for security rather than scientific purposes, so that certain 

settings (like focus and focal length, frame rate per second, multi-camera time syncs) are 

simplified and need to be adjusted by Spoor’s engineers. However, both these settings and the 

general quality and performance of the cameras are being improved by the camera manufacturers 

on a continuous basis.  

The choice of camera, lens, housing and other equipment is decided on a case-by-case basis. 

Various aspects like cost, durability in different environments, focal distance, and field of view 

need to be considered in relation to the project specific purpose of monitoring.  

A number of variables within the equipment determine the ability and quality of bird detection, 

some examples being sensor resolution, focal length, lens “speed” (f-stop), shutter speed, frame 

rate (Frames Per Second, FPS), and data bitrates. 

Using cameras for data capture yields both advantages and limitations. Some of the limitations 

are: 

● Visible Imaging Sensor cameras cannot detect without daylight. For 24 hour monitoring 

they can be combined with thermal imaging cameras. 

● Image quality is affected by weather; fog, rain and snow will typically reduce the range. 

Direct sun striking an unclean lens can also degrade the image quality. In addition, 

atmospheric quality like humidity, airborne dust or air pollution affects image quality 

especially onshore.  
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● Range is ultimately restricted by the physics of lenses and the stability of the mounting 

location. The longer the focal length, the more likely it is that any vibration will degrade 

the final video image (e.g. from wind against the camera body, or the vibration of a 

working wind turbine). 

In addition to cameras, a power supply is needed for them in order to function, and a network 

connection is needed for data transmission. In certain cases where internet access is not 

available, data needs to be stored onsite and manually retrieved at a later date. 

The Hernis CCTV cameras 

This pilot study used three outdoor CCTV cameras mounted on three floating wind turbines. The 

cameras had originally been selected for the purpose of HSE monitoring of personnel doing 

operational and maintenance work on the turbines.  

 
Figure M1: The Hernis CCTV camera, illustration retrieved from Hernis (n.d.) 

 

The CCTV cameras were manufactured by Hernis (see Figure M1). They have resolution of 

1920x1080 pixels, a 30x optical zoom lens (4.5-135 mm focal lengths), and a frame rate of 30 

frames per second. The view angle is between 2.35° and 65.1°. The cameras have wipers to 

clean the lens for water and other contamination. The settings and camera orientations can be 

remotely controlled and adjusted.  
 

Vantage points and camera settings 
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Figure M2: The vantage points of the outdoor CCTV cameras for each of the three turbines in question. The light blue 

circles indicate the potential field of view. For certain angles, the turbine tower obstructs the view.  

The CCTV cameras at Hywind Tampen have been installed for the purpose of HSE monitoring of 

human operations at the turbine, and the vantage points were selected to optimise for this, and 

not for bird monitoring – but remote control made it possible to use the cameras for both purposes. 

In addition, camera placement needs to adhere to safety regulations and should not interfere with 

turbine operations. The placement of the cameras on the three turbines are shown in Figure M2.  

 

The exact position of each camera is measured by the yaw, pitch and roll angles, as seen in 

Figure M3. 

 

 
Figure M3: The yaw, pitch and roll angles that describe the position of a camera. Illustration from Zhang et al. (2014). 

Spoor estimated the yaws, pitches and rolls of each camera based on landmarks visible in the 

images. These estimates were confirmed as reasonable by Equinor.  
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The cameras are mounted outside the railing on the turbine platform, as seen in Figure M4. This 

allows for orienting the camera towards the sea to optimise for bird monitoring, when they are not 

used for HSE monitoring. Figure M5 shows examples of the camera positions used for HSE 

monitoring and for bird monitoring, respectively. 

 

 
Figure M4: The CCTV camera mounted on turbine HY06. Pictures taken by an Equinor operations engineer 7 March 

2024.  

   

 
Figure M5: Two positions of the camera at turbine HY06: The HSE-position (left) and the bird monitoring position (right). 

 

The cameras were programmed by Equinor’s staff so that each camera returns to the bird 

monitoring position whenever it is not being used for HSE purposes. Figure M6 illustrates the 

fixed bird monitoring position of each camera.  
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Figure M6: A representation of the camera orientations for the bird monitoring positions (left). The illustration is 

north/south oriented, with the Gullfaks oil field towards south. The detection range per viewpoint of a bird of 1 m 

wingspan is indicated by the coloured areas in the rightmost illustration. 

 

The three vantage points selected for this pilot were on turbines HY04, HY06 and HY07, and the 

cameras were identified with numbers 8, 13, and 16 respectively. For the rest of this report, these 

will be referred to from north to south as viewpoint A (turbine HY04, camera 8), viewpoint B 

(turbine HY07, camera 16) and viewpoint C (turbine HY06, camera 13).   

Viewpoint A 

Facing south/south-west, from the vantage point of turbine HY04, the field of view is towards the 

middle of the wind farm, as seen in Figure M8. Turbine HY07 – viewpoint B – is in the middle of 

the field of view as seen in Figure M9. The distance between HY04 and HY07 is approximately 

2.6 kilometres. 
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Figure M8: The camera orientation and position of viewpoint A, indicated in blue. The blue area illustrates the 

detection range of a bird with a 1 m wingspan.   

 

 
Figure M9: The track of a Great Black-backed Gull captured from viewpoint A. Turbine HY07 (viewpoint B) is visible 

in the middle of the field of view. An oil platform in the Gullfaks field is visible behind HY07, a second is visible 

towards the leftmost side of the horizon.  

Viewpoint B 

As seen in Figure M10, the camera is facing north/north-east. From the vantage point of turbine 

HY07, the field of view is almost directly opposite viewpoint A and towards the middle of the wind 

farm (Figure M11).  
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Figure M10: The camera orientation and position of viewpoint B, indicated in purple. The purple area illustrates the 

detection range of a bird of 1 m wingspan.  

 

 
Figure M11: The track of a great black-backed gull (red dots) passing through the wind farm, as seen from viewpoint 

B. Turbines HY01 - HY04 are visible from left to right in the field of view.  

Viewpoint C  

As seen in Figure M12, the camera faces south-west, the same direction as viewpoint A. From 

the vantage point of turbine HY06, the field of view is the edge of the wind farm towards the open 

sea, as seen in Figure M13. 
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Figure M12: The camera orientation and position of viewpoint C, in green. The green area illustrates the detection 

range of a bird with a 1 m wingspan.  

 
 

Figure M13: The track of a barn swallow captured from viewpoint C. Two oil platforms at the Gullfaks oil field are 

visible in the leftmost horizon.  

Viewpoint properties 

 

The cameras at each of the three viewpoints have different orientations and settings, as listed in 

Table M1. As discussed in the chapter Surveillance cameras as sensors, the camera properties, 

settings and orientation determine the maximum bird detection distance (range) and height 
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(altitude). On Hywind Tampen, the cameras have focal lengths ranging from 36 mm on viewpoint 

A to just 4.5 mm on viewpoint C. As stated in The Hernis CCTV Cameras chapter, the lowest 

possible focal length is 4.5 mm, while the highest is 135 mm. The difference in focal lengths 

translates directly to substantial differences in estimated maximum detection distance and height 

for each of the viewpoints. For a bird with a 1 m wingspan, the estimated detection distance for 

viewpoint A is ~1,500 m and for viewpoint C it is ~200 m.  

 
Table M1: Parameters of the camera settings, ranges and orientations per viewpoint. The differences in focal lengths 

explains the notable differences in estimated detection distances for each viewpoint. 

 

 Viewpoint A Viewpoint B Viewpoint C 

Turbine HY04 HY07 HY06 

Camera Height 
above sea 

19 m 19 m 19 m 

View Direction S/W N/E S/W 

Camera pitch 1.5° 5° 11° 

View orientation 
inwards or outwards from 
wind farm 

Inwards Inwards Outwards 

Focal length 36 mm 15 mm 4.5 mm 

Estimated detection 
distance  
for bird of 1m wingspan 

~1,500 m ~ 650 m ~ 200 m 

Estimated detection 
height 
for bird of 1m wingspan 

~130 m ~140 m ~100 m 

Estimated detection 
space 
for bird of 1m wingspan 

~12,300,000 m3 ~5,000,000 m3 ~1,300,000 m3 

Figure M14 gives a schematic representation of how the field of view changes according to the 

focal length of the cameras for each viewpoint. A high focal length (“high zoom”) optimises for a 

large detection distance, allowing for distant birds to be detected, but with the tradeoff of less 

monitored space in the vicinity of the camera. A low focal length (“low zoom”) yields lower 

detection distance, but with the benefit of a larger monitored space in the vicinity of the camera, 

allowing for more close-up birds to be detected.  
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Figure 14: An illustration of the relative detection distances for each viewpoint, determined by the focal length of the 

cameras. Blue represents viewpoint A with an estimated detection distance of ~1,500 m for a bird of 1 m wingspan, 

purple represents viewpoint B, and green represents viewpoint C with the corresponding detection distance of ~200 

m.  

Weather data   

Weather data were obtained from a weather station approximately 140 km away on the 

Norwegian coast. Whilst these data do not offer an exact match for the conditions within the 

Hywind Tampen Offshore Wind Farm, they are believed to offer a good proxy for those conditions. 

Data available describe wind speed and direction, precipitation, temperature and a qualitative 

description of conditions (e.g. clear, cloudy, rain, thunderstorm) on an hourly basis throughout the 

study period.  

Species identification, occurrence, detection distance and tracking 

duration 

Detail on bird detection and tracking, as well as, taxonomic classification procedures are provided 

in the pilot report2. Note, that results concerning species observations, occurrence, detection 

distance from the cameras, as well as, tracking durations are based on all bird observations made 

during the 2023-2024 survey period, hereafter referred to as the “full dataset”. In addition to 

differences between viewpoints and in relation to weather conditions, we consider monthly and 

seasonal patterns in abundance and flight direction. For the purposes of this report, we define 

seasons as winter (December, January, February), spring (March, April, May), summer (June, 

July, August) and autumn (September, October, November), roughly reflecting the timing of the 

annual cycles of many of the species present (spring & autumn migrations, breeding season and 

winter) (Snow & Perrins 1998).  

Data normalisation for interannual comparisons 

Birds are known to not be randomly distributed with respect to height above sea level (Johnston 

et al. 2014) and distance from turbines (Johnston et al. 2022; Pollock et al. 2024). Consequently, 

variability in the camera settings, ranges and orientations per viewpoint (Table M1), may introduce 

bias into the data when comparing between cameras (e.g., during interannual comparisons). The 

 
2 Pilot Report Spoor - AI Avian Monitoring with CCTV Cameras on Floating Wind Turbines Experiences 
and Future Potential Available online at: 
https://cdn.equinor.com/files/h61q9gi9/global/26cc50b23fe8e28e10f9cc74c2dad1d20dae188a.pdf?pilot-
report-avian-monitoring-on-floating-wind-turbines-2024-equinor.pdf 
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number of birds recorded is influenced by the maximum detection volume offered by the cameras. 

This varies according to both the technical specifications of the cameras used, for example focal 

length and scene width, the environmental conditions in which data are collected, for example 

visibility, and the size of the species detected, with larger species detected over greater distances, 

and hence having a greater detection volume, than smaller bodied species. Consequently, for 

meaningful comparisons between data collected using different approaches (e.g. using buoy-

mounted cameras pre-construction and turbine mounted CCTV cameras post-construction) and 

different locations, data normalization is important to obtain standardized and inter-comparable 

metrics. 

 

Table M2 summarises the pros and cons for different data normalisation options relating to bird 

observations. Number of birds/sampling volume/unit time was considered the optimal 

normalisation option for the data collected at Hywind Tampen as it was important to obtain an 

understanding of bird abundance (hereafter referred to as the “normalised dataset”). 

 
Table M2: Summary of pros and cons of different approaches to normalising bird observation data at Hywind 

Tampen. Where relevant, alignment with feedback received from the Norwegian Institute for Nature (NINA) is also 

indicated 

 
Normalisation Options Pros Cons Status 

Number of birds observed Simple and easy to calculate Does not consider the area 
covered by the video footage 
(sampling volume) or the duration 
of sampling (both attributes of 
sampling effort), hence, not 
suitable for comparisons 

Not recommended 

Number of birds/sampling 
volume 

Accounts for differences in the 
spatial scale of observations. 
Useful for density estimates. 

Does not consider time / duration 
of sampling, hence, not suitable 
for year-year comparisons or 
within-year comparisons for 
cameras with different recording 
times 

Not recommended 

Number of birds/sampling 
volume/unit time 

Normalizes for both spatial 
(sampling volume) and temporal 
(time) scales. Provides a 
consistent measure for comparing 
across annual surveys and 
cameras. 

Assumes uniform detectability of 
birds throughout the volume and 
time. 
Does not provide information on 
bird behaviour. 

Recommended 

Bird minutes/sampling 
volume 

Incorporates a measure of time 
that birds spend within the 
sampling volume, giving a proxy 
for seabird activity or residency. 

Does not consider time / duration 
of sampling, hence, not suitable 
for year-year comparisons or 
within-year comparisons for 
cameras with different recording 
times 

Not recommended 

Bird minutes/sampling 
volume/unit time 

Normalises for both spatial 
(volume) and temporal time 
scales, and provides a proxy for 
bird activity or residency. 

Assumes uniform detectability of 
birds throughout the volume and 
time. 
Computationally more complex 
than number of birds/sampling 
volume/unit time. 

Not recommended 

Distance travelled/sampling 
volume 

Useful if the focus is on movement 
or migratory behaviour rather than 
presence. 

Does consider time / duration of 
sampling, or bird numbers. 

Out of scope 

Distance travelled/sampling 
volume/unit time 

Combines spatial, temporal, and 
movement data, suitable for 
studies focusing on movement 
rates or flux through a volume. 

Does not consider bird numbers. 
Distance covered is a weaker 
proxy to bird activity or residency 
as it the rate of distance covered 
will vary by species. 

Out of scope 
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Considering the above, in this report, we normalised bird observations by time and sampling 

volume. For time, we considered the total of hours recorded during the sampling period.  However, 

as species are likely to be unevenly distributed in space in relation to the turbines on which the 

cameras are mounted, an additional normalisation step was required to limit analyses to 

observations made within a similar detection space, hereafter referred to as equal detection 

space. Since Viewpoint C was the one with shortest estimated detection distance (200 m) this 

was used to estimate the other dimensions (detection height and width) of the common detection 

space across all Viewpoints, which resulted in ~31 m and 17.5 m for detection width and height, 

respectively. Due to the very different detection space characteristics of each camera, the 

resulting volume of the equal detection space was very small, and captured <3 % of all bird 

observations. To allow for meaningful comparisons to be made, a pragmatic decision was taken 

to increase the detection distance to 350 m, which matches the detection distances of actual bird 

observations made during this survey period by Viewpoint C (see Figure R1). The higher minimum 

detection distance, resulted in estimates of 54 m and 31 m for detection width and height, 

respectively. The updated equal detection space led to ~30 % of all bird observations being 

considered, hereafter referred to as “reduced dataset”. 

Impact of weather on abundance 

Natural variability (e.g., in response to environmental conditions, diurnal patterns, seasonality 

etc.) is likely to contribute to uncertainty associated with the numbers and flight directions of birds 

recorded. To investigate the factors influencing the number of birds recorded, generalized additive 

models (GAMs) were used to analyse both the normalised dataset and the reduced dataset. This 

approach highlights the strength and direction of relationships between environmental parameters 

(see below) and bird abundance, and the uncertainty associated with these estimates. Ultimately, 

it provides better insights into the contribution of environmental variability to uncertainty 

associated with data recorded using turbine-mounted CCTV cameras. The environmental 

parameters included in the GAMs included are presented in Table M3. By analysing both the 

normalised dataset and the reduced dataset, we aim to demonstrate the value of ensuring data 

used for analyses are comparable. For the purposes of these analyses bird abundance was 

standardised by survey effort (i.e., recording times) first, and then aggregated per day. Note, that 

weather data was not available for 201 out of 2,197 bird observations, which were removed prior 

to running the GAMs.  

Table M3. Environmental parameters used in the GAMs. 

Environmental 
Parameter 

Data Source Method of aggregation Dataset 

Temperature  
Norwegian Centre for Climate 
Services 

Average daily  
Normalized & 
Reduced 

Wind Speed 
Norwegian Centre for Climate 
Services 

Average daily 
Normalized & 
Reduced 

Wind Direction 
Norwegian Centre for Climate 
Services 

Average daily 
Normalized & 
Reduced 

Weather Condition 
Norwegian Centre for Climate 
Services 

Most common weather condition 
day 

Normalized & 
Reduced 

Year This report N/A 
Normalized & 
Reduced 
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Month This report N/A 
Normalized & 
Reduced 

Uncertainty associated with distance, flight heights and flight 

direction 

In addition to the uncertainty introduced into estimates of abundance as a result of the natural 

variability outlined above, uncertainty will be introduced into estimates of distance, flight heights 

and flight direction due to error and bias associated with the assumptions underpinning these 

estimates. These were examined in more detail using the full dataset and following the approach 

described below.  

Error associated with estimates of distance and flight height derived based 

on bird size 

The distance between the camera and the bird, and flight height of the bird are estimated using 

Spoor’s algorithm as follows: 

 

Equation 1   [

𝑥_𝑐𝑎𝑚
𝑦_𝑐𝑎𝑚
𝑧_𝑐𝑎𝑚

] =   𝑠 ×  𝐴−1  × [
𝑥_𝑖𝑚𝑎𝑔𝑒
𝑦_𝑖𝑚𝑎𝑔𝑒

1

 ] 

 

Where, x_image is the horizontal distance from the centre of the image in pixels, y_image is the 

vertical distance from the centre of the image in pixels, s is the scale factor, A is the camera 

intrinsic matrix, x_cam is the horizontal distance of the bird from the centre of the image in meters, 

y_cam is the height of the bird above the camera in meters and z_cam is the distance between 

the bird and the camera in meters.  

 

The camera intrinsic matrix, A, is defined as follows: 

 

 

Equation 2 𝐴 =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

 

Where, f is the focal distance in pixels, and c is the camera principal point.  

 

The scale factor, s, is estimated by: 

 

Equation 3  𝑠 =  
𝑜𝑏𝑗𝑟𝑒𝑎𝑙

𝑥𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑
 

 

Where, objreal, is the real world size of the object in millimetres, in this case the wingspan of the 

bird concerned, assumed to be a standard 1 m,  and xunscaled is the size of the object in the 

image in pixels.  
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Following Equation 1, estimates of both the flight height of the bird, and the distance of the 

camera will be influenced by the scale factor, s, which is dependent on the estimated real world 

size of the bird (Equation 3). Consequently, error was introduced into estimates of both distance 

and flight height as a consequence of natural variability in bird body size (Boersch-Supan et al. 

2024).  

 

Following Boersch-Supan et al. (2024), a Monte Carlo simulation approach was used, 

resampling bird wingspans from known distributions (Table M4) in order to recalculate distance 

from the camera and flight heights, by substituting these values into Eq. 3, above. Values for 

xunscaled were based on the first observation of each bird in the full dataset. This gave an 

indication of the potential error introduced into these metrics through assumptions about bird 

body size. Data from the most commonly observed species were considered in this analysis.  

 
Table M4 Wingspans used when estimating species flight heights and distance from camera. 

 

 Wingspan 

Unidentified Gulls Randomly sampled from distributions for 
Herring Gull, Great Black-backed Gull and 
Kittiwake 

Herring Gull 1.44 m (SD 0.0300)1 

Great Black-backed Gull 1.58 m (SD 0.0375)1 

Kittiwake 1.08 m (SD 0.0625)1 

Fulmar 1.07 m (SD 0.0150)2  

Gannet 1.72 m (SD 0.0375)1 
1https://www.nature.scot/doc/guidance-note-7-guidance-support-offshore-wind-applications-marine-ornithology-

advice-assessing#appendix-1-interim-recommended-parameters-by-species.2Snow & Perrins (1998) The Birds of the 

Western Palearctic Concise Edition. Volume 1. Oxford University Press.   

Flight direction 

 

Flight direction was estimated based on a comparison between the first and last point detected 

for each bird, drawing from the full dataset. This approach overlooks any potential uncertainty in 

flight directions that will be present if birds are not engaged in directed flight (e.g. are not on 

migration, or are not commuting between breeding colonies and foraging areas). This 

uncertainty was quantified for each track by randomly sampling points and estimating the flight 

direction between them. Following a Monte Carlo simulation approach, this sampling was 

repeated over 1000 iterations for each track and the mean and standard deviations of these 

were estimated across all iterations, taking the circular nature of cardinal directions into account. 

This analysis gave an indication of the potential error introduced into estimates of flight 

directions based on a comparison of the first and last points of each track.  

 

Uncertainty was also introduced into estimates of flight direction by natural variability in the data. 

For example, the potential for flight directions to vary between years, species, seasons and 

viewpoints. Comparisons were made between flight directions estimated according to each of 
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these factors, giving an indication of the potential uncertainty introduced into estimates of flight 

direction as a consequence of natural variability.  

Testing reduced file size 

As an experiment, to test the possibility of reducing the file size of video recordings and thereby 

the storage requirements, videos recorded during December 2024 and January to February 

2025 had their frame rates lowered from 30 frames per second (FPS) to 10 FPS and analysed 

for bird activity. It was expected that the effect of reducing the framerate would have some effect 

on the quality of the results and the ability of the system to detect and track birds, but this effect 

was not expected to be significant or impact the results to a large extent. The analysis 

performed here was ultimately limited to the videos recording during December 2024, as this 

was deemed sufficient, and processing and analysing the remaining videos from January and 

February wouldn’t add more value to the results of the experiment. 

Results 

Data capture 

Birds observed in relation to detection distance, detection height, and detection width per 

Viewpoint are shown in Figure R1. In all cases, birds were observed further away than the 

theoretical maximum detection limit across all dimensions. The theoretical maximum detection 

distance is based on a minimum density of 8 pixels per meter. However, in this instance, 

particularly in the case of the larger species present at this site, data could be obtained at lower 

pixel densities. 

 

 

Figure R1. Bird observations in relation to vertical (top) and horizontal (bottom) field of view for each camera. Red 

lines indicate field of view, blue lines indicate theoretical maximum detection distance for a bird with a 1 m wingspan, 
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black line indicates the extent used when standardising data between cameras, whilst this is beyond the theoretical 

maximum detection distance for Viewpoint C, this was a pragmatic choice to maximise the data included when 

standardising between cameras, reflecting the fact that a substantial number of birds were recorded at distances of 

350 m from Viewpoint C. This is likely to be due in part to the fact that the typical wingspan of many species recorded 

on the site (e.g. large gulls, Northern Gannet) exceeds 1 m.   

Bird observations at Hywind Tampen  

Species  

A total of 16 bird taxa were identified across 2023-2024 (full dataset), 11 at the species level, 1 

at the family level, 2 at the Order level, 1 at the Clade level, 1 at the Class level (Figure R2; 

Appendix Table 1). Total number of bird observations across viewpoint were 756, 563, and 878 

for Viewpoints A, B, and C, respectively (Figure R2; Appendix Table 1). Additional detail on 

observation per species and viewpoint is available in Appendix Table 1. Bird observations 

across season are available in Table R1. As might be expected from previous studies, there 

were seasonal and annual patterns in species abundance (e.g. Robertson et al. 2014; Warwick-

Evans et al. 2016), with fewer birds detected in 2024 than were detected in 2023. A key 

contributor to these differences appears to be the greater number of gulls (both Great Black-

backed Gulls and unidentified gulls) detected during autumn migration in 2023 than in 2024 

(Figure R3). 

 

The most commonly observed and identified species was the Great Black-backed Gull. A 

substantial proportion of the unidentified gulls are also likely to be Great Black-backed Gulls, 

though imagery was not clear enough to allow positive identification. Great Black-backed Gulls 

have a complex migratory strategy (Anker-Nilssen et al. 2000). The population is partially 

migratory, and whilst many individuals may remain in Norway throughout the year, others move 

in a south-westerly direction following the end of the breeding season, wintering in the United 

Kingdom, and elsewhere in Europe (Robinson et al. 2024). This is reflected in records of the 

species within Hywind Tampen throughout the year. The remaining species are mostly either 

breeding seabirds which may occur in and around the site whilst foraging (Northern Gannet, 

European Herring Gull, Northern Fulmar, Black-legged Kittiwake, Great Skua) and/or when 

migrating between breeding and wintering locations, and passage migrants detected during 

spring or autumn migration (Barn Swallow, White Wagtail and other small passerines, Short-

eared owl, raptors and waders). The exceptions to this are European Shag/Great Cormorant, 

which were only recorded during winter, when they may take advantage of opportunities to roost 

on the turbine structures, and great spotted woodpecker, a species which does not typically 

undertake substantial movements or migrations except as juvenile or immature birds (Snow & 

Perrins 1998).  
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Figure R2. Top: Number of individuals from each species/group observed by year, label colours on the x-axis indicate 

Norwegian Red List status for each species – Endangered, Vulnerable, Least Concern, Not Applicable (e.g., a group 

rather than individual species). Bottom: Number of individuals from each species/group observed by year and 

Viewpoint. 
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Figure R3. Number of individuals from each species/group observed during autumn migration by year, label colours 

on the x-axis indicate Norwegian Red List status for each species – Endangered, Vulnerable, Least Concern, Not 

Applicable (e.g., a group rather than individual species). 

Table R1. Number of individuals from each species/group observed by season considering all birds observations (full 

dataset) during May 2023-November 2024. 

 

Common Name (Taxon Name) Status Autumn Spring Summer Winter 

Barn swallow (Hirundo rustica) Passage 
migrant  

0 4 0 0 

Bird (Aves) NA 67 39 94 47 

Black-legged kittiwake (Rissa tridactyla) Breeding 0 0 4 0 

European herring gull (Larus argentatus) Breeding 0 5 1 1 

European Shag / Great Cormorant 
(Phalacrocorax aristotelis / Phalacrocorax 
carbo) 

Wintering 0 0 0 5 

Great black-backed gull (Larus marinus) Partial 
migrant 

229 48 457 82 

Great skua (Stercorarius skua) Breeding 0 0 1 0 

Great spotted woodpecker (Dendrocopos 
major) 

Vagrant 0 0 1 0 

Gull (Laridae) Partial 
migrant 

359 111 285 163 

Northern fulmar (Fulmarus glacialis) Breeding 12 0 5 0 

Northern gannet (Morus bassanus) Breeding 11 59 70 7 

Raptor Passage 
migrant 

1 0 1 0 

Short-eared owl (Asio flammeus) Passage 
migrant 

0 1 0 0 
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Small passerine bird (Passeriformes) Passage 
migrant 

4 8 11 1 

Wader (Charadriiformes) Passage 
migrant 

1 0 1 0 

White wagtail (Motacilla alba) Passage 
migrant 

1 0 0 0 

Total number of species observed  4 5 7 4 

Total number of species / groups 
observed 

 
9 8 12 7 

 

Detection distances and tracking durations 

Analysis of the overall minimum and maximum detection distances for birds observed, using the 

full dataset, provides insights on the actual capabilities of the camera setup. Results are most 

informative for groups with larger numbers of detections; for example, Great black-backed gull. In 

general, the trends are similar between species/groups and show that most birds are detected 

closer to the cameras (within the first ~100 m) as opposed to further away (Figure R4); however, 

smaller numbers of first detections are made out to 1000s of metres (Figure R5). In terms of the 

maximum detection distances for birds recorded, those unidentified birds with coarse groupings 

(e.g., birds / gulls), are detected at a greater distance compared to species-level groupings with 

the exception of the Great black-backed gull and a small passerine bird (Figure R5). The camera 

at Viewpoint A, which had the longest detection capability, detecting birds over greater distances 

(mean minimum detection distance of 888 m ± 720 m standard deviation across all observations), 

followed by Viewpoint B (351 m ± 277 m), and lastly Viewpoint C (105 m ± 84) with the shortest 

detection capability. 
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Figure R4: Minimum detection distances at which bird species/groups were detected across all viewpoints combined 

throughout 2023-2024. 
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Figure R5: Maximum detection distances at which bird species/groups were detected across all viewpoints combined 

throughout 2023-2024. 

 

Tracking duration varied between ~8-10 seconds for the most commonly observed birds such as 

the Great black-backed gull and other gulls (Figure R6; Table R1). Average tracking duration was 

broadly similar between cameras, except for some including Northern Fulmar, and, small 

passerine birds, however, these had few observations overall (10 and 24, respectively). 
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Figure R6: Tracking durations of bird species/groups across all viewpoints combined throughout 2023-2024. 

Impact of weather conditions 

Table R2 indicates the impact of weather conditions on the bird minimum and maximum detection 

distances, and the bird tracking durations from the full dataset. As might be expected, detection 
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distances were significantly lower during foggy conditions, but comparable during clear, cloudy 

and rainy conditions (Figure R7). Tracking durations seemed to be comparable across weather 

conditions (Figure R7). 

 
Table R2: Mean minimum and maximum detection distances, and tracking durations across all bird observations (full 

dataset) under different weather conditions. Weather conditions were grouped to four categories for statistical 

comparisons. 

 

Weather 
condition 

Weathe
r 
categor
y group 

Minimum distance 
(m) 

Maximum distance 
(m) 

Tracking duration 
(s) 

Total 
observa
tions 
per 
weather 
conditio
n 

  Mean Sd Mean Sd Mean Sd  

Clear 
Clear 

457.74 710.83 480.85 723.02 8.44 7.20 75 

Fair 485.63 663.97 504.49 675.76 7.79 6.63 91 

Cloudy Cloudy 430.27 563.61 462.06 595.30 8.82 9.78 1540 

Fog Fog 200.29 264.62 215.48 285.45 6.76 5.40 29 

Light Rain 

Rain 

450.38 624.37 487.95 661.98 9.68 8.15 125 

Rain Shower 172.81  188.67  5.53  1 

Rain 528.12 667.13 553.29 678.22 10.51 12.18 104 

Heavy Rain 406.23 617.87 428.32 630.12 8.89 8.32 27 

Light Snowfall 247.59 149.12 248.31 148.56 4.98 3.11 4 

NO weather data N/A 452.68 309.61 480.66 319.15 8.11 6.16 201 
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Figure R7: Minimum and maximum detection distances, and tracking duration at which birds were detected in relation 

to prevailing weather conditions. “Light rain”, “Rain showers”, “Heavy Rain”, and “Light Snowfall” categories were 

grouped under Rain, and “Fair” was grouped with “Clear”. A total of 201 bird observations with no associated weather 

condition information were removed from this plot. Boxes indicate median, and the 25th  and 75th quantiles, whiskers 

are 1.5 times the interquartile. Asterisks indicate significant differences as identified by the pairwise Wilcoxon Rank-

Sum test, adjusted for multiple comparisons using the False Discovery Rate (FDR) method (Benjamini-Hochberg 

correction). Significance levels = 0.05 (*), 0.01 (**) level, respectively; ns = not significant. 

Analysis of abundance 

Two GAMs were used to investigate the effect of environmental parameters, using the normalised 

and reduced datasets. Both GAMs indicate a significant decline in total abundance in 2024, with 

strong negative effects in both the normalized and reduced datasets (Tables R3 and R4). In the 

normalised dataset, wind speed is the only significant predictor (p < 0.05; Table R3) indicating a 

negative relationship in bird abundance with increasing wind speed (Figure R8). Whereas in the 

reduced dataset, month is significant (p < 0.05, Table R4) indicating higher abundances around 

the summer period (Figure R9). Weather conditions are not significant in either model. The 

reduced dataset explains more deviance (52.8% vs. 45.3%) and has a lower GCV (0.79 vs. 0.95), 

indicating slightly better predictive performance, though its adjusted R² is lower indicating that it 

captures less variability. 

 
Table R3. Summary of the Generalized Additive Model (GAM) fit based on the normalized dataset, displaying 

estimated model coefficients, standard errors, test statistics, and significance levels. The table includes both 

parametric coefficients and smooth terms, where the effective degrees of freedom (edf) reflect the complexity of the 

smooth functions. The significance of smooth terms is assessed using approximate F-statistics. Additional model 

diagnostics include the percentage of deviance explained, the generalized cross-validation (GCV) score, and the R-

squared value, which provide insights into model fit and predictive performance. Lower GCV scores and higher R-

squared values indicate better model performance. 
Normalized dataset GAM 

Model formula: Total_Abundance ~ s(Avg_Temperature) + s(Avg_WindSpeed) + s(Avg_WindDirection) + 
Most_Common_Weather + Year + s(Month, bs = "re") 
Family: Gamma; Link function: log 

Parametric coefficients: Estimate Std. Error t value Pr(>|t|) Sig. 

(Intercept) 1.0162 0.2355 4.316 2.5e-05 *** 

Most_Common_WeatherCloudy 0.1586 0.6455 0.669    0.504   

Most_Common_WeatherFog 0.5541 0.6115 0.858 0.392   

Most_Common_WeatherRain 0.3089 0.3292 0.938 0.349  

Year2024 -1.042 0.1401 -7.448 <2e-16 *** 

Approximate significance of smooth terms             Edf Ref.df F p-value    Sig. 

s(Avg_Temperature) 2.22586 2.850 1.381 0.189  

s(Avg_WindSpeed) 8.26022 8.841 7.079 
 

<2e-16 *** 

s(Avg_WindDirection) 1.00048  1.001 0.5 

 

0.481   

s(Month) 0.00675 8 0.001 0.410   

Sig. codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’, 1 

R-sq.(adj) =  0.206, Deviance explained =   45.3%, GCV = 0. 95116, Scale est. = 0.93097, n = 216. 
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Figure R8. Relationship between abundance (bird observations per day) and wind speed used as per the normalizedl 

dataset GAM. Scatter plots show the observed abundance data points (blue), with the smooth effect of wind speed on 

abundance indicated by the red line and shaded area. The red line represents the estimated GAM smoother, and the 

shaded area represents the 95% confidence interval. 

 
Table R4. Summary of the Generalized Additive Model (GAM) fit based on the reduced dataset, displaying estimated 

model coefficients, standard errors, test statistics, and significance levels. The table includes both parametric 

coefficients and smooth terms, where the effective degrees of freedom (edf) reflect the complexity of the smooth 

functions. The significance of smooth terms is assessed using approximate F-statistics. Additional model diagnostics 

include the percentage of deviance explained, the generalized cross-validation (GCV) score, and the R-squared 

value, which provide insights into model fit and predictive performance. Lower GCV scores and higher R-squared 

values indicate better model performance. 

Reduced dataset GAM 

Model formula: Total_Abundance ~ s(Avg_Temperature) + s(Avg_WindSpeed) + s(Avg_WindDirection) + 
Most_Common_Weather + Year + s(Month, bs = "re") 
Family: Gamma; Link function: log 

Parametric coefficients: Estimate Std. Error t value Pr(>|t|) Sig. 

(Intercept) -6.1156 0.4082 -14.981 < 2e-16 *** 

Most_Common_WeatherCloudy -0.2093 0.3527 -0.593 0.554  

Most_Common_WeatherFog -0.3916 0.5706 -0.686 0.494  

Most_Common_WeatherRain -0.2561 0.423 -0.605 0.546  

Year2024 -1.2677 0.1911 -6.633 1.14E-09 *** 

Approximate significance of smooth terms: Edf Ref.df F p-value Sig. 

s(Avg_Temperature) 1.743 2.179 1.129 0.293677  

s(Avg_WindSpeed) 1 1 1.724 0.191807  

s(Avg_WindDirection) 6.729 7.814 1.198 0.27466  

s(Month) 6.145 8 3.331 0.000124 *** 

Sig. codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’, 1 

R-sq.(adj) =  0.0992; Deviance explained = 52.8%, GCV = 0.78487; Scale est. = 0.78411; n = 135 
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Fig R9. Relationship between abundance (bird observations per day) (blue points) and Month as per the reduced 

dataset GAM. 

Comparison of data between months, seasons and years 

Recording duration across month, season and year are available in Appendix Table 2. These 

were used to normalise abundances for survey effort (= recording duration), which in combination 

with normalising for detection space, resulted in the reduced dataset. Daily bird abundance from 

the reduced dataset was comparable across all months, with the exception of February-March 

where no birds were detected (Figure R10), likely reflective of the seasonal abundance and 

distribution of the most commonly recorded species – Northern Gannet and Great Black-backed 

Gull – in the North Sea (Waggitt et al. 2020). Pairwise comparisons did not find significant 

differences in daily bird abundance between the remaining months (Table R5). No observations 

in February-March and lower abundances in April was not due to lower survey effort, since 

recording duration was  comparable between November and February (Appendix Table 2). On 

the other hand, season did not seem to have a significant effect on daily abundance. This is likely 

to be because whilst summer months typically had the greatest abundance of birds, they also had 

the greatest within-season variation in abundance, encompassing values present during other 

seasons, and making it more challenging to distinguish these values statistically (Figure R10). 

Finally, daily bird abundances were significantly higher in 2023 than  2024 (Figure R10).  
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Figure R10. Daily abundance across year, season and month. Boxes indicate median, and the 25t  and 75th quantiles, 

whiskers are 1.5 times the interquartile. Asterisks indicate significant differences as identified by the pairwise Wilcoxon 

Rank-Sum test, adjusted for multiple comparisons using the False Discovery Rate (FDR) method (Benjamini-Hochberg 

correction). Significance levels = 0.05 (*), 0.01 (**) level, respectively; ns = not significant. 

 

Table R5. Pairwise Wilcoxon Rank-Sum test for differences in daily bird abundance across months. The p-value 

adjusted using the False Discovery Rate (FDR) method (Benjamini-Hochberg correction), which accounts for multiple 

comparisons. 

Month January April May June July August September October November 

April 0.15                 

May 0.7 0.15               

June 0.38 0.12 0.57             

July 0.84 0.16 0.72 0.38           

August 0.44 0.12 0.48 0.79 0.32         

September 0.93 0.12 0.89 0.5 0.72 0.48       

October 0.33 0.7 0.29 0.15 0.38 0.15 0.21     

November 0.72 0.12 0.79 0.93 0.5 0.87 0.7 0.19   

December 0.58 0.12 0.57 0.22 0.87 0.22 0.55 0.38 0.38 
 

Species flight heights 

The position and pitch of the cameras means that all birds recorded in the full dataset will be 

well above the sea surface (Table M1 & Figure R1), this bias cannot be addressed through 

using either the normalised, or reduced datasets. As a consequence, estimates of species 

mean flight heights (Table R6) will be positively biased, and greater than those reported 

elsewhere (e.g. Johnston et al. 2014). As would be expected, given that many of the species 

recorded tend to fly close to the sea surface (Johnston et al. 2014), these mean estimates are 

close to the lower limit of the field of view of the camera. 

 

Table R6 Mean flight heights of birds recorded from CCTV cameras  

 

Species Mean Flight Height in meters 
(Standard Deviation) 

Barn swallow 50.42 (53.02) 
Unidentified Bird 41.45 (33.31) 
Black-legged kittiwake 23.59 (0.98) 
European herring gull 26.72 (4.95) 
European Shag / Great Cormorant 25.5 (3.4) 
Great black-backed gull 34.07 (21.42) 
Great skua 15.91* 

Great spotted woodpecker 21.21* 

Unidentified Gull 54.29 (39.59) 
Northern fulmar 32.13 (8.05) 
Northern gannet 24.39 (7.06) 



  

37 

Raptor 38.48 (11.66) 
Short-eared owl 31.21* 

Small passerine bird 50.95 (30.31) 
Wader 45.85 (3.28) 
White wagtail 24.86* 

*Based on a single record 

 

Continuous flight height distributions can be generated for species for which over 100 records 

are available (Johnston & Cook 2016). Based on the data available continuous flight height 

distributions were generated for all birds, Great Black-backed Gulls and Northern Gannets 

(Figure R11). These distributions indicated that over 98% of recorded birds were flying at 

heights likely to place them at risk of collision. However, the proximity of the lower limit of the 

camera field of view to the lower limit of the rotor sweep means that these data are strongly 

biased and do not reflect the true collision risk of species present within the wind farm.  

 

 
Figure R11 Continuous flight height distributions for all birds, Great Black-backed Gulls and 

Northern Gannets recorded within the Hywind Tampen Offshore Wind Farm using CCTV 

cameras.  

Estimates of error  

Error associated with estimates of distance and flight height derived based 

on bird size 

As might be expected, assumptions around a standard 1 m wingspan for all species introduced 

error into estimates of both distance from camera and flight height (Table R7). This error was 

more substantial for distance to the camera than for flight height, though, in part, this is likely to 

reflect the scales over which the two parameters were measured. It should be noted that the 

errors associated with flight height estimates are of a similar magnitude to those obtained from 
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tracking data (Johnston et al. 2023), and less substantial than those obtained from digital aerial 

surveys using size-based methodologies (Boersch-Supan et al. 2024).  

 

Assumptions around the wingspan influence estimates of the real-world size of the bounding box 

used to calculate bird position in Eq.’s 1-3, above. Consequently, the errors associated with 

estimates of distance and flight height are strongly correlated with the wingspan of the species 

concerned. This means that the error associated with estimates for birds with wingspans closer 

to 1 m is less than is the case for species which have a wingspan which is much greater than 1 

m (Figure R12). However, it should also be noted that these analyses do not take the orientation 

of the birds into account. For larger species, like gannets, this is likely to mean that the values in 

Table R7 reflect the maximum possible error. For species such as kittiwake or fulmar, with 

wingspans which are close to 1 m, changes in orientation are likely to result in a greater 

discrepancy between the assumed and actual real world sizes of the bounding box.   
 

Table R7. Median Root Mean Squared Error (RMSE) associated with distance from camera and flight heights 

estimated using a standard 1 m wingspan for all birds versus a wingspan sampled from a known distribution for each 

species. 

 Median RMSE Distance Median RMSE Flight Height 

Unidentified gulls 137.30 m 5.19 m 

Gannet 138.51 m 8.76 m 

Great black-backed Gull 76.11 m 5.21 m 

Herring Gull 53.95 m 0.03 m 

Kittiwake 14.90 m 1.15 m 

Fulmar 31.37 m 0.70 m 
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Figure R12. Median Root Mean Squared Error (RMSE) associated with distance from camera and flight heights 

estimated using a standard 1 m wingspan for all birds versus a wingspan sampled from a known distribution for each 

species (f = fulmar, ki = kittiwake, hg = herring gull, gb = great black-backed gull, gx = gannet), in relation to the 

wingspan of the species concerned. Red lines indicate best fit for relationship between wingspan and RMSE.  

 

Direct comparison of points estimated using a wingspan estimate sampled from a known 

distribution with those assuming a 1 m wingspan estimate indicates that the resultant error is likely 

to increase with distance from the camera (Figures R13-R15). The variability around the estimates 

drawn from a known distribution of wingspans varies between species. For species with a greater 

variability in wingspan, such as larger gulls, there is greater variability in the resultant estimates 

of distance. This variability is greatest when there is uncertainty around species identification, as 

is the case for unidentified gulls (Figure R15). However, the magnitude of this variability is typically 

less than the error introduced through assumptions of a 1 m wingspan. Similar patterns are seen 

in relation to estimates of flight height (Figures R16–R18), though it is important to note that whilst 

error around flight height estimates does appear to be correlated with height, it does not appear 

to be strongly correlated with distance from the camera (Figure R19).  
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Figure R13. (Left) Distance estimated for gannets using a wingspan estimated sampled from a known distribution in 

comparison to distance estimated using an assumed 1 m wingspan, red line indicates where points would lie if there 

were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) of estimated distance 

using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line indicates median RMSE of 

138 m.  

 

 

 

Figure R14. (Left) Distance estimated for great black-backed gulls using a wingspan estimated sampled from a known 

distribution in comparison to distance estimated using an assumed 1 m wingspan, red line indicates where points would 

lie if there were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) of estimated 
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distance using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line indicates median 

RMSE of 76 m. 

 

 

Figure R15. (Left) Distance estimated for unidentified gulls using a wingspan estimated sampled from a known 

distribution in comparison to distance estimated using an assumed 1 m wingspan, red line indicates where points would 

lie if there were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) of estimated 

distance using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line indicates median 

RMSE of 137 m. 
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Figure R16. (Left) Flight height estimated for gannets using a wingspan estimated sampled from a known distribution 

in comparison to distance estimated using an assumed 1 m wingspan, red line indicates where points would lie if there 

were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) of estimated flight height 

using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line indicates median RMSE of 

8.76 m. 

 

 

Figure R17. (Left) Flight height estimated for great black-backed gulls using a wingspan estimated sampled from a 

known distribution in comparison to distance estimated using an assumed 1 m wingspan, red line indicates where 

points would lie if there were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) 
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of estimated flight height using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line 

indicates median RMSE of 5.19 m. 

 

 

Figure R18. (Left) Flight height estimated for unidentified gulls using a wingspan estimated sampled from a known 

distribution in comparison to distance estimated using an assumed 1 m wingspan, red line indicates where points would 

lie if there were a perfect match between the two. (Right) Distribution of root mean squared error (RMSE) of estimated 

flight height using a sampled wingspan estimate in comparison to an assumed 1 m wingspan, red line indicates median 

RMSE of 5.21 m. 
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Figure R19. Relationship between root mean squared error (RMSE) estimates of flight height and distance from camera 

for (a) gannets; (b) great black-backed gulls; and, (c) unidentified gulls.  

Flight Direction 

Species 

As might be expected given the dominance of great black-backed gull, and other gull species, in 

the dataset, the flight directions for all birds largely corresponded to the flight directions for gulls 

(Figure R20). Whilst flights were generally in a westerly direction, there was no clear dominant 

direction (mean flight direction for all observations 261° SD 34°), with the possible exception of 

gannets, which appeared to fly along an SE-NW axis (mean flight direction 179° SD 24°), 

indicated by more pronounced peaks in the NW and SE segments of the plot for Northern Gannet 

in Figure R20.   

 

 

 

 

Figure R20. Flight directions for all birds detected, great black-backed gull, northern gannet and all gulls. 

 

Camera 

Flight directions for the Viewpoints A (mean 251° SD 41°) and B (mean 250° SD 34°), within the 

wind farm, were broadly similar, and consistent with the flight directions for all species highlighted 

above. However, flight directions at Viewpoint C (mean 280° SD 29°) showed more evidence of 

directional flight along an SE-NW axis (Figure R21).  
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Figure R21. Flight directions for all birds detected from viewpoints A, B and C.  

Year 

There appeared to be a slight difference in the overall flight directions recorded in 2023 (mean 

258° SD 37°) and 2024 (mean 280° SD 31°) (Figure R22), largely driven by differences in the 

directions recorded at Viewpoint A (Table R8).  
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Figure 22. Flight directions for all birds detected in 2023 and 2024 

Table R8. Mean flight directions by year for Viewpoints A, B and C. 

 Viewpoint A Viewpoint B Viewpoint C 

2023 236° (SD 45°) `249° (SD 37°) 280° (SD 30°) 

2024 300° (SD 37°) 255° (SD 28°) 268° (SD 27°) 

Season 

There were clear differences in the flight directions recorded in the spring (mean 164° SD 27°) 

and the summer (mean 267° SD 33°), autumn (mean 263° SD 37°) and winter (236° SD 40°). 

This difference was evident amongst the three main species groups (Table R9, Figure R23), and 

from Viewpoints A and C, but not Viewpoint B (Table R10).  

 

 

Figure R23. Flight directions for different species groups by season 

Table R9. Mean flight directions by season for different species groups. 

 Winter Spring Summer Autumn 

Gull 227° (SD 42°) 108° (SD 22°) 250° (SD 34°) 266° (SD 34°) 

Great black-
backed Gull 

256° (SD 31°) 171° (SD 26°) 272° (SD 33°) 259° (SD 37°) 

Gannet 220° (SD 16°) 158° (SD 34°) 302° (SD 27°) 225° (SD 70°) 



  

47 

 

 

Table R10. Mean flight directions by season for Viewpoints A, B and C. 

 Winter Spring Summer Autumn 

2023 2024 2023 2024 2023 2024 2023 2024 

Viewpoint 
A 

250° 
SD 49° 

164° 
SD 47° 

- 
68° SD 
34° 

236° 
SD 43° 

309° 
SD 37° 

233° 
SD 46° 

292° 
SD 38° 

Viewpoint 
B 

261° 
SD 52° 

169° 
SD 37° 

- 
268° 
SD 26° 

246° 
SD 35° 

148° 
SD 29° 

251° 
SD 37° 

278° 
SD 23° 

Viewpoint 
C 

268° 
SD 36° 

112° 
SD 22° 

295° 
SD 24° 

164° 
SD 24° 

287° 
SD 29° 

319° 
SD 26° 

257° 
SD 32° 

308° 
SD 40° 

 

Error 

For the data collected at Hywind Tampen, the difference between these mean randomly sampled 

bearings, and those estimated based on the first and last point of each track is typically quite low, 

at an average of ~7.5°across all species, though in some cases it was more substantial (Figure 

R24). The standard deviation (mean SD 34°) in flight direction within each track was of a similar 

magnitude to the standard deviation in direction across all tracks, estimated above (Tables R7 – 

R9), arising as a result of factors such as differences between seasons, years and viewpoints. 

This suggests that the uncertainty introduced into estimates of flight direction through a simplified 

approach of comparing the first and last point on each track is of a similar magnitude to that 

introduced through background variability in the data.  

 

Comparison of differences in the two approaches to estimating flight direction may help inform 

inferences of bird behaviour. Behaviours such as foraging would be characterised by tracks with 

a greater sinuosity than is the case for birds engaged in migratory or commuting flight (Amélineau 

et al. 2021). During migration, which is likely to be characterized by more directional flight, we 

would expect birds to be traveling in straight lines, meaning that there would be a smaller 

difference between flight directions estimated based on mean randomly sampled bearings, and 

those estimated based on the first and last point of each track, than would be the case for foraging 

flight. Similarly, we would expect a smaller standard deviation around directions estimated based 

on mean randomly sampled bearings for migratory than foraging flight.  

 

During the spring, and at Viewpoint C, the difference between the mean randomly sampled 

bearings, and those estimated based on the first and last point of each track are lower than is the 

case for other times of year, or Viewpoints A and B (Tables R11 and R13). This is also the case 

for gannets in comparison to gulls. These data suggest that there may be a difference in behaviour 

between birds within the wind farm, recorded from Viewpoints A and B, and those on the edge of 

the wind farm, recorded from Viewpoint C. 
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Figure R24. Distribution of differences between the overall bearing estimated based on the first and last point of each 

track and the mean bearing estimated between randomly sampled points  

Table R11. Mean differences between the overall bearing estimated based on the first and last point of each track and 

the mean bearing estimated between randomly sampled points for each season and species 

 

 Winter Spring Summer Autumn 

All Birds 9.24° (SD 
14.97°) 

4.40° (SD 6.75°) 7.61° (SD 
14.89°) 

8.28° (SD 
12.51°) 

Gulls 9.25° (SD 
13.98°) 

4.02° (SD 6.33°) 8.11° (SD 
16.74°) 

7.90° (SD 
10.45°) 

Gannet 2.51° (SD 0.01°) 5.27° (SD 7.29°) 4.91° (SD 6.39°) 8.47° (SD 7.51°) 

Great black-
backed Gull 

6.08° (SD 9.85°) 2.73° (SD 3.64°) 8.16° (SD 
16.74°) 

8.86° (SD 
14.49°) 

Table R12. Mean differences between the overall bearing estimated based on the first and last point of each track and 

the mean bearing estimated between randomly sampled points for each viewpoint and species 

 Viewpoint A Viewpoint B Viewpoint C 

All Birds 9.22° (SD 11.86°) 8.34° (SD 16.80°) 5.61° (SD 11.80°) 

Gulls 8.47° (SD 11.13°) 7.36° (SD 13.35°) 6.60° (SD 14.71°) 

Gannet 6.73° (SD 7.17°) 8.44° (SD 9.45°) 3.55° (SD 5.12°) 

Great black-backed 
Gull 

10.35° (SD 12.61°) 9.79° (SD 21.26°) 5.54° (SD 10.73°) 
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Testing reduced file size 

In figures R25 and R26, the results from analysing the 30 FPS videos from December 2023 and 

the 10 FPS videos from December 2024 are shown, respectively. Figure R25 shows that birds 

are detected and tracked by Spoor software, even at the lower framerate of 10 FPS. Although, 

the total bird detection counts were lower for December 2024 than the same month in 2023, this 

difference is similar to what we found in general for 2024 versus 2023 (Figure R10) and is 

therefore more likely due to natural variation than an effect of reducing frame rate during the 

December 2024 period. For reference, the total bird count for December 2024 was 90 compared 

to 154 for December 2023 and the average file size for a 5-minute video segment for the 30 

FPS 2023 data was 165 Mb compared to 16 Mb for the 10 FPS 2024 data. Thus, a significant 

reduction in data storage appears possible without a large impact on the results obtained. 

 

 

 

Figure R25. Bird observation counts from all three cameras for December 2023.  
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Figure R26. Bird observation counts from all three cameras for December 2024.  
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Discussion 

System performance 

Patterns of bird abundance at Hywind Tampen 

Species identification, occurrence, detection distance and tracking duration 

89% of all bird observations could be classified to species (46%), family (42%) or order (1%) level, 

leaving only 11% of all bird observations unidentified to taxonomic levels of class or lower. Of the 

detected species, the white wagtail is the smallest with a wingspan of 25-30 cm, and the Northern 

gannet is the largest with a wingspan of 165-185 cm.  

 

The list of detected species indicates that it is mainly breeding and/or wintering seabirds that were 

captured by Spoor AI. The exceptions were small passerines, barn swallows, a woodpecker, an 

owl, and raptors, which were largely restricted to the spring or autumn migration periods, and 

hence likely to reflect migrating birds (with the exception of the woodpecker, which is likely to 

reflect the movement of a juvenile or immature bird).  

 

Whilst the migration period does not seem to significantly affect the detection counts at Hywind 

Tampen, records of barn swallows and a short-eared owl during spring are likely to reflect 

migrating birds. Looking at the seasonal distribution of species observations in Table R1, even 

though the most diverse bird occurrences were during the summer and autumn, the taxa observed 

exclusively during those periods had low counts (~<10) (e.g., Northern fulmar, raptors). 

 

The analysis of the minimum and maximum bird detection distances provided valuable insights 

into the camera system's capabilities. The findings were most meaningful for species with a higher 

number of detections, such as the Great Black-backed Gull. Generally, detection patterns were 

consistent across species and indicated that most birds are first observed within approximately 

100 meters of the cameras, rather than at greater distances. A small number of group-level 

taxonomic observations (e.g., gulls; birds) were made into the thousands of meters. 

 

The above have important ramifications in the choice of cameras to use depending on the purpose 

of the survey. Viewpoint C, which had the greatest detection space within the first hundreds of 

meters, and was most useful for recording bird ID (~53% of birds identified to species level) and 

abundance in the vicinity of the wind farm. In contrast, Viewpoint A was best at observing birds 

far away but relatively poor at assigning IDs to them (~37% of birds identified to species level), 

and with a field of view that meant less coverage of areas closer to the wind farm, hence, it could 

be useful if bird numbers only were of importance. Viewpoint B with intermediate capabilities may 

represent an effective compromise between detection space and species identification. Finally, it 
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is worth noting, that after data normalisation has been applied to account for the different 

viewpoint detection capabilities, the reduced dataset is still dominated by Viewpoint C, indicating 

a greater abundance of birds outside, than inside the wind farm. Ultimately, the best normalisation 

method is conducted pre-survey by using similar camera settings across all viewpoints, rather 

than post-survey. While the latter is still possible, as evidenced in this study, it still has limitations 

that need to be considered when interpreting the results. 

Temporal variability 

The highest absolute number of observations was 931 and occurred during the summer, followed 

by 684 observations during the autumn, 306 in winter, and 271 in spring (Table R1). However, 

this does not account for recording duration, which was almost double during summer and 

autumn, in part reflecting seasonal changes in day length. Consequently, following the initial step 

to produce the normalised dataset, accounting for these temporal differences, no seasonal effect 

in daily observed abundances was detected (Figure R9). The seasonal patterns only became 

apparent in the reduced dataset with an equalised detection space across all three cameras 

(Table R4; Figure R9). Within the reduced dataset, abundance peaked during the late summer 

and early autumn, likely to correspond to the point at which gull species, which dominate the birds 

detected during this study, depart breeding colonies and begin their migration (e.g. Borrmann et 

al. 2021). Further evidence for the possible influence of migration is available when considering 

the observed flight directions in the full dataset which highlighted clear differences in flight 

direction between the spring (mean 164° SD 27°) and the rest of the year. This difference was 

evident amongst the three main species groups, and from Viewpoints A and C. It is likely to reflect 

spring migration with species, including gulls and gannets, returning to their breeding sites from 

their wintering locations. The smaller standard deviation around the mean values from spring may 

also reflect more directional flight, as might be expected during migration.  

 

Focusing on interannual variations, 2023 had overall significantly higher abundances compared 

to 2024. Seabird distributions at sea are often closely linked to oceanographic features, such as 

the location of fronts, which may vary over time (Robertson et al. 2014; Warwick-Evans et al. 

2016). Consequently, interannual variation in distributions are a common feature of seabird at sea 

data, but without more detailed environmental data, it is not possible to investigate the reasons 

for these patterns.  

Impact of environmental conditions 

Foggy conditions significantly reduced detection distances but not tracking duration. Additionally, 

there was no difference between the rest of the weather conditions (cloudy, rainy, clear) in terms 

of bird detection distances and weather conditions. It must be noted that environmental data used 

in this survey were taken from 140 km away, hence, might not represent local conditions at 

Hywind Tampen. 

 

Modelling results identified confirmed the significant effect of survey year and survey month as 

important drivers of daily bird abundances at Hywind Tampen (Tables R3 and R4). Wind speed 

was also identified as being negatively correlated with abundance when using the full dataset. As 
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mentioned above, local environmental data will provide more certainty in the above results. 

Notably, local environmental data might lead to the opposite effect, in that conditions not identified 

as significant here (temperature, wind direction, weather conditions) might become significant, in 

line with existing literature (Garthe et al. 2009; Gibb et al. 2017; Pistorius et al. 2015). 

 

Comparing the models based on the reduced and normalized dataset, respectively, even though 

the former has slightly better capabilities of predicting abundance patterns (higher deviance and 

lower GCV values; Table R4), the difference with the normalized dataset model is minor. Given 

that the normalized-dataset model has a higher explanatory power (higher adjusted R2 values, 

Table R3), and because it provides more insight into the role of wind speed, it is more useful for 

understanding ecological drivers of bird populations. 

 

Finally, one unquantified effect on the above daily abundance rates could be due to water droplets 

on the lens/es that might have suppressed counts during rainy conditions 

Error, bias, precision, variability and uncertainty 

The potential for uncertainty in data collected in relation to offshore wind farms has been widely 

acknowledged (e.g. Masden et al. 2015; Searle et al. 2023). This uncertainty can arise as a 

consequence of natural variability in the environment and/or as a result of differences in error, 

bias and precision introduced during data collection. It is important to acknowledge that this is a 

common feature of all biological data collection, regardless of the methodology or technology 

used (Elphick 2008). However, in order to ensure that robust inferences can be made in relation 

to the data collected as part of ecological studies, it is vital to clearly define, identify and, where 

possible, quantify, error, bias and precision, and the contribution that these make to any 

uncertainty in the available data. We discuss these in turn below.  

Error 

Measurement error is a common feature of movement data (Jerde & Visscher 2005). Figures 

R13-R18 highlight how assumptions around species wingspan introduce error into estimates of 

the distance between the camera and the bird, and of the flight height of the bird. It is important 

to understand, and where possible, quantify this error.  

 

Error may be systematic and/or random, and it is important to understand the extent of each. 

Over-, or underestimating species wingspans introduces a systematic error into estimates of the 

distance between the camera and the bird concerned (Figures R13-R18), resulting in a consistent 

over- or underestimate of both distance and flight height, depending on the species concerned. 

Of particular note is that this error appears correlated with distance, meaning that the impact of 

inaccuracies in assessments of species wingspan is greater at increased distances from the 

camera. Systematic errors such as this will introduce bias into the final estimated locations of the 

birds.  
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There is intra-specific variation in species body sizes. As a consequence, it is not possible to have 

a high degree of certainty surrounding the real world size of the bird used in Eq. 3. This uncertainty 

will introduce error into estimates of the location of the birds (Boersch-Supan et al. 2024). 

However, this error is likely to be random, rather than systematic, meaning that it will influence 

the precision of any estimates, but is unlikely to introduce any additional bias.   

Bias 

Bias in the data may arise either due to systematic errors, or due to study design. Systematic 

errors introduced bias through over- or underestimating values. For example, where species 

wingspans are greater than 1 m, the assumption of a 1 m wingspan results introduces bias into 

the estimate of the distance between the camera and the bird by underestimating the true value 

(Figures R13 – R18). 

 

Study design can introduce bias into data collection if certain areas are over or under-represented 

in sampling. For example, the field of view of the cameras used for data collection means that 

sampling volume increases with distance (Figure R1). As a consequence, birds closer to the 

camera are less likely to be within the field of view, and are therefore likely to be under-

represented in the final dataset, than birds that are further away. Similarly, the height and pitch of 

the cameras will introduce bias into estimates of species flight heights as the resulting field of 

view does not cover the sea surface and lower altitudes, where many species are likely to be 

most abundant (Johnston et al. 2014). In the case of the cameras installed within Hywind Tampen, 

the tilt and pitch means that the minimum height above sea-level covered is ~19 m (Figure R1). 

Consequently, birds below this height will not be detected, which for many species is likely to 

constitute the majority of those present (Johnston et al. 2014). As a result, estimated mean flight 

heights and distributions for the species detected will be biased, and over-estimated in relation to 

the ”true” values (Table R6, Figure R11).  

 

In some instances, these sampling biases can be accounted for by correcting for area sampled. 

However, such corrections assume either that birds are randomly distributed with respect to the 

position of the camera, or that any non-randomness can be easily accounted for. Birds are known 

to be non-randomly distributed in relation to both height above sea-level (Johnston et al. 2014), 

and with distance to turbines (Johnston et al. 2022; Pollock et al. 2024). Accounting for both of 

these processes, particularly whilst there is still substantial uncertainty associated with them, is 

extremely challenging.  

 

Without accounting for biases in the data collected, comparisons of the numbers of birds present 

at different locations and time periods must be limited to relative, rather than absolute numbers. 

Furthermore, differences in the field of view and sampling volume of the cameras used in this 

study, mean that these comparisons must be made using a normalised estimate of birds within a 

common detection space.  
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Precision 

Precision relates to the extent of any error associated with the estimated location. As highlighted 

in figures R13-R18, there can be a high degree of precision associated with these estimates – as 

indicated by the relatively tight standard deviations around the locations estimated by randomly 

sampling wingspans from distributions of known values – but these estimates may still be subject 

to substantial error – as indicted the estimates of RMSE between locations estimated based on 

an assumed 1 m wingspan, and wingspans estimated from distributions of known values. 

Typically, the precision with which we are able to estimate values will increase as we obtain better 

information and data. For example, where we are able to estimate the distance between then 

camera and great black-backed gulls with greater precision (Figure R14) than is the case for 

unidentified gulls (Figure R15). However, care must be taken to ensure that any estimates are 

not unduly precise. For example, in addition to considering uncertainty in species wingspan, 

calculations may need to account for the potential for the angle of the bird relative to the camera 

to influence the real-world width of the bounding box considered in Eq. 3. Failing to do so may 

give a misleading impression of the uncertainty associated with estimated positions.   

Variability 

The numbers and species of birds recorded, and their flight behaviours will be influenced by 

spatial, temporal and environmental variability. Analyses highlighted that abundance was greater 

in 2023 than in 2024, and that there were seasonal patterns in the number of birds recorded 

(Figure R9). Similarly, considering the data on flight directions, there were clear differences 

between Viewpoint C, outside the wind farm, and Viewpoints A and B, inside the wind farm. By 

quantifying, and accounting for, these relationships, for example by applying analyses such as 

those presented above (Tables R3 and R4), it is possible to reduce some of the uncertainty 

associated with the numbers of birds seen, and their behaviour.    

Uncertainty 

Uncertainty is a common feature of ecological data (Milner-Gulland & Shea 2017). It arises as a 

function of error, bias, precision and variability associated with the data under consideration. 

Reducing the uncertainty associated with the CCTV data will increase the value of these data for 

understanding species interactions with offshore windfarms. However, it is important to 

acknowledge that that, as with all ecological data, there will be an element of irreducible 

uncertainty. Consequently, it is important to consider which elements of uncertainty can be 

reduced, and which cannot. For example, errors in estimates of the position of birds introduced 

through assumptions of a standard 1 m wingspan can be reduced through the use of readily 

species-specific estimates, where birds can be identified to species, or group, level. However, 

natural variation in species body size means that there will be limit to the precision that can be 

achieved using this approach (Boersch-Supan et al. 2024). Consequently, uncertainty can be 

reduced by reducing the error introduced through assumptions about species body size, but not 

through improvements in the precision of these estimates.   
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Reduced file size 

Although it was necessary to use data from different periods for the analysis and comparing 30 

FPS and 10 FPS videos (and therefore the experiment was not controlled), the conclusion is 

that the system is still able to detect and tracks birds at 10 FPS and visually the results look 

similar to results obtained when analysing 30 FPS videos. There likely is some reduction in the 

ability to detect and track birds with 10 FPS versus 30 FPS videos, however do not appear 

significant. Therefore, given that the frame rate reduction yields more than an order of 

magnitude reduction in file size, Spoor does not see any problem reducing the frame rate to 10 

FPS for the purpose of bird monitoring from CCTV cameras and Hywind Tampen going forward. 

Conclusions and recommendations 
The CCTV cameras at Hywind Tampen collect valuable data describing the movements of birds 

in and around the wind farm. As might be expected, the species detected are dominated by 

seabirds with substantial foraging ranges (Woodward et al. 2024). However, there was a clear 

signal in relation to migration both in relation to the species detected, and the flight directions 

recorded, particularly during the spring. Camera data also indicated potential differences in flight 

direction inside and outside the wind farm, and evidence of more directional flight outside the wind 

farm, indicative of possible differences in behaviour. It would be valuable to explore these 

relationships in more detail to gain a greater understanding of species responses to offshore wind 

farms, potentially through comparison with data collected using the buoy-mounted cameras 

deployed at the site. By including environmental data from closer to the wind farm in analyses, it 

would be possible to more clearly quantify drivers of changes in daily bird abundance, particularly 

in relation to weather conditions.  

 

The analyses presented here highlight that, whilst post-survey normalisation methods are 

possible, they can have limitations (e.g. favouring the camera on which the thresholds for the 

equal detection space have been based on; in this case Viewpoint C) and remove a significant 

part of the collected data in the process. These limitations can be overcome during the study 

design phase through the selection of cameras with similar, and ideally identical, detection 

capabilities, which would make for a more straightforward comparison of data. Normalisation was 

based on birds/sampling volume/unit time, a commonly used approach that can provide 

standardised information on species abundances. These data could potentially be scaled up to 

the level of the wind farm, which may provide a useful measure of flux as an input to collision risk 

models (Cook et al. 2025). Through comparison with data collected during pre-construction 

surveys, for example using buoy-mounted cameras, data may also be used to make inferences 

about changes in abundance and displacement rates. Further development of normalisation 

methods, for example consideration of total bird minutes recorded, rather than bird abundance, 

may yield further insights into bird behaviour that complement other findings.  

 

A key source of uncertainty in location of the tracks obtained from the data arises from errors 

introduced by an assumption of a generic 1 m wingspan for all species. Errors in estimated flight 
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heights are of a magnitude similar to those obtained using GPS tagging (Johnston et al. 2023), 

and substantially smaller than those obtained using digital aerial survey (Boersch-Supan et al. 

2024). However, error in the estimates of horizontal distance between the camera and bird are 

more substantial, which may be of significance if estimating the proximity of birds to turbines. 

Where birds have been identified to species, or group level, this error could be reduced through 

the use of published estimates of wingspan (e.g. Snow & Perrins 1998).  However, there is likely 

to be a limit to the precision that can be achieved using this approach as a consequence of natural 

variation in species body size.  
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Appendix Table 1: Summary of species observed and their threat status per survey year and viewpoint across both 

full and reduced dataset. 

Common Name Taxon 
Norwegian Red 

List 
Yea

r 
Obs 

Viewpoin
t 

Obs - 
Reduced 

Barn swallow Hirundo rustica LC 

202
3 

0 A 
0 

0 B 
0 

4 C 
3 

202
4 

0 A 
0 

0 B 
0 

0 C 
0 

Bird Aves   

202
3 

48 A 
4 

29 B 
8 

47 C 
11 

202
4 

44 A 
3 

24 B 
5 

55 C 
27 

Black-legged kittiwake Rissa tridactyla EN 

202
3 

0 A 
0 

3 B 
3 

0 C 
0 

202
4 

0 A 
0 

0 B 
0 

1 C 
1 

European herring gull Larus argentatus VU 

202
3 

0 A 
0 

0 B 
0 

0 C 
0 

202
4 

5 A 
1 

0 B 
0 

2 C 
2 

European Shag / Great 
Cormorant 

Phalacrocorax aristotelis / Phalacrocorax 
carbo 

LC* / NT 

202
3 

0 A 
0 

0 B 
0 

0 C 
0 

202
4 

0 A 
0 

5 B 
4 

0 C 
0 

Great black-backed gull Larus marinus LC 

202
3 

141 A 
22 

208 B 
98 

278 C 
163 

202
4 

63 A 
13 

30 B 
6 

96 C 
73 

Great skua Stercorarius skua  LC* 

202
3 

0 A 
0 

0 B 
0 

1 C 
1 

202
4 

0 A 
0 



  

63 

0 B 
0 

0 C 
0 

Great spotted woodpecker Dendrocopos major LC 

202
3 

0 A 
0 

0 B 
0 

1 C 
1 

202
4 

0 A 
0 

0 B 
0 

0 C 
0 

Gull Laridae   

202
3 

178 A 
5 

157 B 
19 

154 C 
35 

202
4 

201 A 
7 

71 B 
6 

157 C 
62 

Northern fulmar Fulmarus glacialis LC 

202
3 

8 A 
0 

8 B 
6 

1 C 
0 

202
4 

0 A 
0 

0 B 
0 

0 C 
0 

Northern gannet Morus bassanus LC 

202
3 

4 A 
1 

8 B 
3 

16 C 
10 

202
4 

47 A 
1 

18 B 
6 

54 C 
47 

Raptor Telluraves?   

202
3 

0 A 
0 

0 B 
0 

1 C 
1 

202
4 

1 A 
0 

0 B 
0 

0 C 
0 

Short-eared owl Asio flammeus LC* 

202
3 

0 A 0 

0 B 0 

0 C 0 

202
4 

0 A 0 

0 B 0 

1 C 0 

Small passerine bird Passeriformes   

202
3 

8 A 
1 

2 B 
0 

3 C 
0 

202
4 

6 A 
0 

0 B 
0 
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Appendix Table 2: Recording hours per month, season and year.  

Month Recording hours 

January 453 

February 315 

March 481 

April 725 

May 657 

June 725 

July 896 

August 1,042 

September 1,394 

October 781 

November 317 

December 466 

Total recording hours 8,252 

Total for Autumn 2,492 

Total for Winter 1,234 

Total for Spring 1,863 

Total for Summer 2,663 

Total for 2023 2,764 

5 C 
3 

Wader Charadriiformes   

202
3 

2 A 0 

0 B 0 

0 C 0 

202
4 

0 A 0 

0 B 0 

0 C 0 

White wagtail Motacilla alba LC 

202
3 

0 A 
0 

0 B 
0 

1 C 
1 

202
4 

0 A 
0 

0 B 
0 

0 C 
0 

Full dataset 

Total 2023 1311 

R
e
d
u
c
e
d 
d
a
t
a
s
e
t 

Total 2023 - 
reduced 

396   

Total 2024 866 Total 2024  267   

Total Viewpoint A 756 
Total 

Viewpoint 
A 

58   

Total Viewpoint B 563 
Total 

Viewpoint 
B 

164   

Total Viewpoint C 878 
Total 

Viewpoint 
C 

441   
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Total for 2024 5,488 

 


