

Equinor | A broad energy company

Equinor is an international energy company committed to long-term value creation in a low-carbon future.

Our purpose is to turn natural resources into energy for people and progress for society.

Equinor's portfolio of projects encompasses oil and gas, renewables and low-carbon solutions, with an ambition of becoming a net-zero energy company by 2050.

Headquartered in Stavanger (Norway), Equinor is the leading operator on the Norwegian continental shelf. We are present in around 30 countries worldwide.

Equinor ambitions | Net Zero by 2050

- We are committed to develop our company in support of the Paris Agreement's goal
- By 2030 we aim to spend 50% of all investment into renewables and low-carbon solutions
- Our low-carbon solutions are based on CCS targeting hard-to-abate part of the energy system

CCS Ambitions: 15-30 Mtpa CO₂ transport and storage capacity by 2035 Equinor share

Carbon Capture & Storage (CCS) Value Chain

Capture

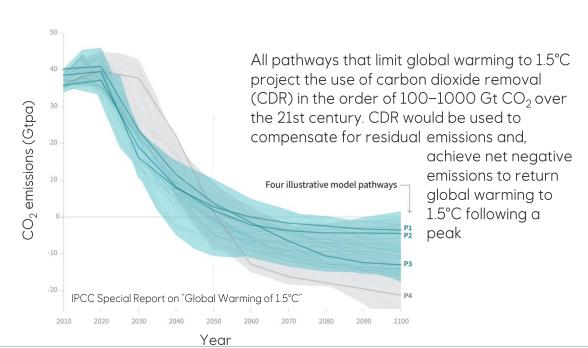
CO₂ is captured at the emission source - power, industry, waste, DAC etc

Transport

The CO₂ is transported, usually by ship or pipeline to the injection facility

Storage

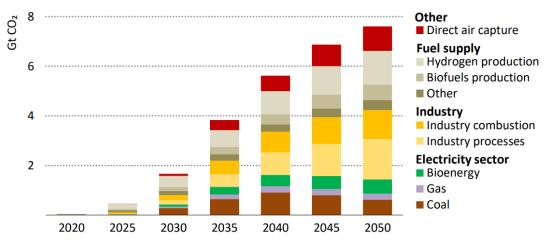
The CO₂ is injected and safely stored at depths typically > 1 km


equinor **

Why CCS | A requisite to meet climate goals

UN Intergovernmental Panel on Climate Change (IPCC) points to CCS as a necessity to keep global warming to 1.5°C

Global total net CO₂ emissions | Pathways to reach 1.5°C


From IPCC Special Report on "Global Warming of 1.5°C" (link)

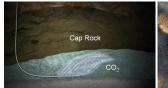
The International Energy Agency (IEA) states that we will need to store billions of tones of CO_2 every year to reduce global warming

Global CCS by source | Scenario to achieve net zero by 2050

From IEA's Net Zero by 2050 | A roadmap for the Global Energy Sector (link)

IEA. All rights reserved.

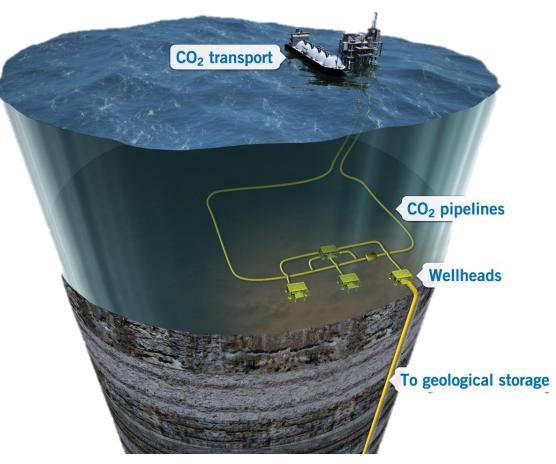
By 2050, 7.6 Gt of CO_2 is captured per year from a diverse range of sources. A total of 2.4 Gt CO_2 is captured from bioenergy use and DAC, of which 1.9 Gt CO_2 is permanently stored.


Is CCS safe? Yes, several mechanisms in place


Several trapping mechanisms assuring safe containment

- **Structural trapping:** sealing cap rock preventing the CO_2 to escape upwards
- Capillary/residual trapping: large part of the CO₂ is trapped and immobilized in pore throats between sand grains
- CO_2 dissolution: with time, the injected CO_2 will dissolve in the salt water in the reservoir and sink down
- Mineralization: Some dissolved ${\rm CO_2}$ will form minerals, thus becoming completely immobile

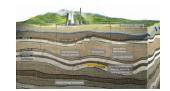
The CO_2 is also **monitored** during and after injection with a variety of proven technologies (as demonstrated at Sleipner)



Capillary trapping

Dissolution

Mineralisation



Technology maturity | We have 26 years experience

Continuing technology focus

CO₂ Storage Resource Maturation & Optimization

CO₂ Storage Integrity and Monitoring

- Equinor is a leading pioneer in this technology and has been storing CO_2 offshore the coast of Norway since 1996
- Operator of two of three existing full-scale offshore projects (Sleipner & Snøhvit)
- 14 years of piping CO₂ offshore for storage (Snøhvit)
- 7 years of onshore CO₂ injection (In Salah, Algeria)
- Operator of Technology Centre Mongstad (CO₂ capture) since 2012
- Project developer of the world's first open-source transport and storage infrastructure project (Northern Lights)

Cost Effective CCS Wells

CO₂ Transport Technology

CO₂ Capture Technology

equinor ***

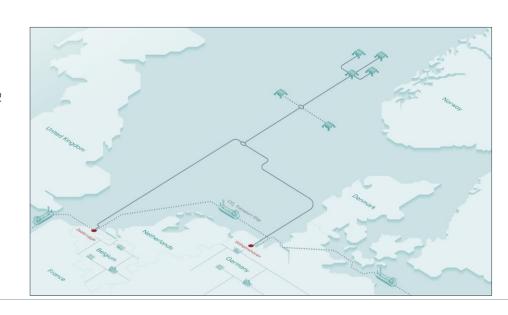
Equinor's low carbon portfolio | October 2022

Project name	Project type	Country	
Northern Lights (NL)	CO ₂ transport & storage	NO	
Northern Endurance Partnership	CO ₂ transport & storage	UK	_
Smeaheia	CO ₂ transport & storage	NO	_
Polaris	CO ₂ transport & storage	NO	_
European CO2 Trunkline	CO ₂ transport & storage	DE,NO,BE	_
H2H Saltend	Blue hydrogen	UK	_
Aldbrough H2 storage	Hydrogen storage	UK	_
Net Zero Teesside (NZT)	Power + CCS	UK	_
Keadby 3	Power + CCS	UK	_
Peterhead	Power + CCS	UK	_
Keadby Hydrogen Power Station	Hydrogen to power	UK	_
H21	Hydrogen fuel switch	UK	- _ Ne
H2M Eemshaven	Blue hydrogen	NL	_ 110
AquaSector	Green hydrogen	DE	_ K
H2GE Rostock	Blue hydrogen	DE	_
H2BE	Blue hydrogen	BE	_
NortH2	Green hydrogen	NL, BE, DE	_
Clean Hydrogen to Europe	Blue hydrogen	NO	
Barents Blue	Blue ammonia	NO	
US Tristate	Power+CCS+H ₂	US	

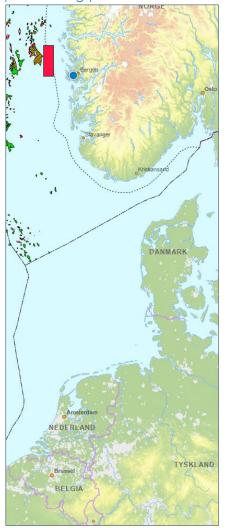
Northern Lights | First open access CO₂ T&S

being matured by a broad range of industries, such as cement, steel, waste to energy and power

NORTHERN LIGHTS SCOPE CO, capture Transport Receiving terminal Permanent storage Intermediate onshore storage. CO2 is injected into a saline aquifer. Capture from industrial plants. Liquid CO₂ Liquefaction and temporary storage. Pipeline transport to offshore transported by ship. storage location. 100 km 2 600m Equinor together with Shell and TotalEnergies, are developing **Northern Lights** which is offering a CO₂ transport and storage service to industry • Industry can capture their emissions and bring it to the harbor where the Northern Lights will collect it by ship and bring it to Norway for geological offshore storage • The construction work is well ahead, and first CO₂ injection will **start in 2024** • Northern Lights is part of a full CCS value chain called **Longship** which is heavily funded by the Norwegian government • Two Norwegian industrial CO₂ capture projects are part of Longship, one **cement factory** and one **waste to energy plant** This ensures progress along the full value chain; capture, transport and storage, we are solving the "chicken and egg" problem Northern lights is marketing spare capacity and the interest from industry in Europe is overwhelming. Capture projects are



Smeaheia | Form basis for a European CO₂ trunkline


- The "Smeaheia" CO₂ storage license awarded Equinor in April 2022
- 20 Mtpa storage potential
- A CO₂ pipeline can **reduce cost for transport by more than 50%** compared to what offered today

A European CO₂ trunkline

- Urgent need to accelerate development of European ${\rm CO_2}$ transport and storage capacity
- Equinor partnering with Wintershall DEA and Fluxys to develop CO₂ pipeline systems (see map)
- Capacity to transport 20 to 40+ Mtpa
- Operational before end of this decade (ambition)

Map indicating position of Smeaheia

«Most people are talking about a low-carbon <u>future</u>, but we are building it <u>here and now</u>» Sverre J. Overå, Project Director, Northern Lights